Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(12): eadi8594, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38507486

RESUMO

Marine cloud brightening (MCB) is the deliberate injection of aerosol particles into shallow marine clouds to increase their reflection of solar radiation and reduce the amount of energy absorbed by the climate system. From the physical science perspective, the consensus of a broad international group of scientists is that the viability of MCB will ultimately depend on whether observations and models can robustly assess the scale-up of local-to-global brightening in today's climate and identify strategies that will ensure an equitable geographical distribution of the benefits and risks associated with projected regional changes in temperature and precipitation. To address the physical science knowledge gaps required to assess the societal implications of MCB, we propose a substantial and targeted program of research-field and laboratory experiments, monitoring, and numerical modeling across a range of scales.

3.
J Geophys Res Atmos ; 126(14)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34377622

RESUMO

This study examines the atmospheric properties of weather states (WSs) derived from the International Satellite Cloud Climatology Project over the Western North Atlantic Ocean. In particular, radiation and aerosol data corresponding to two sites in the study domain, Pennsylvania State University and Bermuda, were examined to characterize the atmospheric properties of the various satellite-derived WSs. At both sites, the fair weather WS was most prevalent, followed by the cirrus WS. Differences in the seasonality of the various WSs were observed at the two sites. Fractional sky cover and effective shortwave cloud transmissivity derived from ground-based radiation measurements were able to capture differences among the satellite-derived WSs. Speciated aerosol optical thicknesses (AOT) from the Modern-Era Retrospective Analysis for Research and Applications, version 2 were used to investigate potential differences in aerosol properties among the WSs. The clear sky WS exhibited below-average seasonal values of AOT at both sites year-round, as well as relatively high rates of occurrence with low AOT events. In addition, the clear sky WS showed above-average contributions from dust and black carbon to the total AOT year-round. Finally, transitions between various WSs were examined under low, high, and midrange AOT conditions. The most common pathway was for the WSs to remain in the same state after a 3 h interval. Some WSs, such as mid latitude storms, deep convection, middle top, and shallow cumulus, were more prevalent as ending states under high AOT conditions. This work motivates examining differences in aerosol properties between WSs in other regions.

4.
Clim Change ; 165(1): 12, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33758443

RESUMO

Humans have significantly altered the energy balance of the Earth's climate system mainly not only by extracting and burning fossil fuels but also by altering the biosphere and using halocarbons. The 3rd US National Climate Assessment pointed to a need for a system of indicators of climate and global change based on long-term data that could be used to support assessments and this led to the development of the National Climate Indicators System (NCIS). Here we identify a representative set of key atmospheric indicators of changes in atmospheric radiative forcing due to greenhouse gases (GHGs), and we evaluate atmospheric composition measurements, including non-CO2 GHGs for use as climate change indicators in support of the US National Climate Assessment. GHG abundances and their changes over time can provide valuable information on the success of climate mitigation policies, as well as insights into possible carbon-climate feedback processes that may ultimately affect the success of those policies. To ensure that reliable information for assessing GHG emission changes can be provided on policy-relevant scales, expanded observational efforts are needed. Furthermore, the ability to detect trends resulting from changing emissions requires a commitment to supporting long-term observations. Long-term measurements of greenhouse gases, aerosols, and clouds and related climate indicators used with a dimming/brightening index could provide a foundation for quantifying forcing and its attribution and reducing error in existing indicators that do not account for complicated cloud processes.

5.
J Geophys Res Atmos ; 125(6)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32699733

RESUMO

Decades of atmospheric research have focused on the Western North Atlantic Ocean (WNAO) region because of its unique location that offers accessibility for airborne and ship measurements, gradients in important atmospheric parameters, and a range of meteorological regimes leading to diverse conditions that are poorly understood. This work reviews these scientific investigations for the WNAO region, including the East Coast of North America and the island of Bermuda. Over 50 field campaigns and long-term monitoring programs, in addition to 715 peer-reviewed publications between 1946 and 2019 have provided a firm foundation of knowledge for these areas. Of particular importance in this region has been extensive work at the island of Bermuda that is host to important time series records of oceanic and atmospheric variables. Our review categorizes WNAO atmospheric research into eight major categories, with some studies fitting into multiple categories (relative %): Aerosols (25%), Gases (24%), Development/Validation of Techniques, Models, and Retrievals (18%), Meteorology and Transport (9%), Air-Sea Interactions (8%), Clouds/Storms (8%), Atmospheric Deposition (7%), and Aerosol-Cloud Interactions (2%). Recommendations for future research are provided in the categories highlighted above.

7.
Atmos Chem Phys ; 17(12): 7311-7332, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32849860

RESUMO

Aerosol indirect effects have potentially large impacts on the Arctic Ocean surface energy budget, but model estimates of regional-scale aerosol indirect effects are highly uncertain and poorly validated by observations. Here we demonstrate a new way to quantitatively estimate aerosol indirect effects on a regional scale from remote sensing observations. In this study, we focus on nighttime, optically thin, predominantly liquid clouds. The method is based on differences in cloud physical and microphysical characteristics in carefully selected clean, average and aerosol-impacted conditions. The cloud subset of focus covers just ~5% of cloudy Arctic Ocean regions, warming the Arctic Ocean surface by ~1-1.4 W m-2 regionally during polar night. However, within this cloud subset, aerosol and cloud conditions can be determined with high confidence using CALIPSO and CloudSat data and model output. This cloud subset is generally susceptible to aerosols, with a polar nighttime estimated maximum regionally integrated indirect cooling effect of ~ -0.11 W m-2 at the Arctic sea ice surface (~10% of the clean background cloud effect), excluding cloud fraction changes. Aerosol presence is related to reduced precipitation, cloud thickness, and radar reflectivity, and in some cases, an increased likelihood of cloud presence in the liquid phase. These observations are inconsistent with a glaciation indirect effect and are consistent with either a deactivation effect or less efficient secondary ice formation related to smaller liquid cloud droplets. However, this cloud subset shows large differences in surface and meteorological forcing in shallow and higher altitude clouds and between sea ice and open ocean regions. For example, optically thin, predominantly liquid clouds are much more likely to overlay another cloud over the open ocean, which may reduce aerosol indirect effects on the surface. Also, shallow clouds over open ocean do not appear to respond to aerosols as strongly as over stratified sea ice environments, indicating a larger influence of meteorological forcing over aerosol microphysics in these types of clouds over the rapidly changing Arctic Ocean.

8.
Proc Natl Acad Sci U S A ; 113(21): 5812-9, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-26831092

RESUMO

The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol-cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol-cloud interactions adequately. There is a dearth of observational constraints on aerosol-cloud interactions. We develop a conceptual approach to systematically constrain the aerosol-cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol-cloud radiation system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...